Available online at www.sciencedirect.com
-y

"=, ScienceDirect Progress in

Natural Science

ELSEVIER Progress in Natural Science 19 (2009) 489-494

www.elsevier.com/locate/pnsc

Deriving all minimal consistency-based diagnosis sets using SAT solvers

Xiangfu Zhao *°, Liming Zhang *®, Dantong Ouyang *®*, Yu Jiao *®

* Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
®School of Computer Science and Technology, Jilin University, Changchun 130012, China

Received 27 April 2008; received in revised form 7 July 2008; accepted 7 July 2008

Abstract

In this paper, a novel method is proposed for judging whether a component set is a consistency-based diagnostic set, using SAT solv-
ers. Firstly, the model of the system to be diagnosed and all the observations are described with conjunctive normal forms (CNF). Then,
all the related clauses in the CNF files to the components other than the considered ones are extracted, to be used for satisfiability check-
ing by SAT solvers. Next, all the minimal consistency-based diagnostic sets are derived by the CSSE-tree or by other similar algorithms.
We have implemented four related algorithms, by calling the gold medal SAT solver in SAT07 competition — RSAT. Experimental
results show that all the minimal consistency-based diagnostic sets can be quickly computed. Especially our CSSE-tree has the best effi-
ciency for the single- or double-fault diagnosis.
© 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.
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1. Introduction

Model-based diagnosis (MBD) is one of the active
branches in artificial intelligence (AI). It plays an impor-
tant role of test-bed of some approaches to knowledge rep-
resentation and reasoning [1]. Its basic principle is to
employ the model of a device to judge faults logically,
according to the difference between the model’s prediction
and the actual observation.

Traditionally, conflict recognition, aiming at generating
all minimal conflict sets, and candidate generation, aiming
at generating all minimal hitting-sets, are of the two impor-
tant steps towards the final diagnostic results. However,
both of them are NP-complete problems. Therefore, the
efficiency of each step greatly affects the final diagnosis.

In AI, most path-finding problems, notably Al planning
[2] and model-checking [3], have been very successfully
reduced to the propositional satisfiability problems
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(SAT). Recently, Grastien et al. [4,5] have also reduced
diagnosis of discrete-event systems to SAT problems.
Instead, in this paper, we consider determining a consis-
tency-based diagnostic set and show how it can be reduced
to SAT and efficiently solved by SAT solvers.

The structure of the paper is as follows: Some prelimi-
naries of MBD and SAT are given in Section 2. Related
algorithms are presented in Section 3. Some experimental
results are given in Section 4. Some related work and com-
parisons are discussed in Section 5. Finally, conclusions
and some future directions are put forward in Section 6.

2. Preliminaries

Firstly, let us introduce some definitions involved in
model-based diagnosis.

Definition 1 [6]. A system is a triple (SD, COMPS, OBS),
where SD (system description) is a set of first order
sentences; COMPS (system components) is a finite set of
constants; OBS (system observation) is a finite set of first
order sentences.
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In the following, a unary predicate AB(-) is interpreted
to mean ‘“‘abnormal”. AB(c) is true iff ¢ is abnormal, where
c € COMPS.

Definition 2 ([6,7]). Given 4 C COMPS, A is called a
consistency-based diagnosis for (SD,COMPS,OBS) if
SD U OBS U {-AB(c)|c € COMPS-A} is satisfiable.

A consistency-based diagnosis for (SD, COMPS, OBS)
A is a minimal one (MCBD), iff for no proper subset of
A is a diagnosis for (SD, COMPS, OBS).

In the following, let us have a look at SAT solvers. The
purpose of a SAT solver is to accept a conjunctive normal
formula (CNF) P, in clauses normal form, and then to
evaluate whether P is true (satisfiable).

Recently, the field of SAT solving has advanced dramat-
ically: a CNF containing hundreds of thousands or even
millions of literals can now be handled by the state-of-
the-art solvers, such as SATO [8] or zChaff [9] to name just
two of the most popular solvers.

Any set of propositional forms can be transformed into
a CNF. For instance, a set of propositional forms
{4 - B,B— C,~C, A}, can be described with a CNF file
as follows (variables A, B, and C are denoted by 1, 2,
and 3, respectively):
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where in the first line, “p cnf” are keywords, “3” is the
number of total variables, and “4” is the number of total
clauses in this CNF file. Every negative number denotes
that the corresponding variable is negative, for example,
“—1” denotes “—A4”. “0” marks the end of a clause.

SD.cnf 9

According to Definition 2 and SAT, now we can give the
basic idea of judging whether a component set SubCOM P
is a consistency-based diagnosis. Firstly, create a CNF file
with all the component description clauses extracted from
SD (in a CNF file) related to the component set (COMPS
— SubCOMP), and all the corresponding clauses specifying
the OK (i.e. “AB) mode for every related component.
Then, call a SAT solver with this CNF. If “true” is
returned, SubCOMP is a diagnosis.

3. Description of algorithms

In this section, we first show how a system model and
observations can be described with CNF files. Next, an
algorithm IsDiag is given to determine whether a subset
of COMPS is a diagnosis. Then four variant CS-tree algo-
rithms can derive all minimal diagnoses by calling IsDiag.

3.1. Modeling a system and observations with CNF

Given a system to be diagnosed, in contrast to the tradi-
tional approach [6], we use propositional logic for model-
ing. Not only the system components but also all the
links between components are denoted by variables. For
each component ¢, we use ¢ and —c to show that this com-
ponent is in OK mode or in AB mode, respectively, for sim-
plicity. Every component behavior is described with a
propositional statement. All the component behavioral
descriptions make up the system description: SD.cnf, a
CNF file.

Let us take the fulladder shown in Fig. 1, for example, in
which “17, “2” and “3” denote input variables; “4” and
“5” denote output variables; “6”, “7”, and “8” denote all
the internal link variables. All the gates, including XOR
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Fig. 1. Fulladder and its SD.cnf.



X. Zhao et al. | Progress in Natural Science 19 (2009) 489-494 491

gates X1 and X2, AND gates Al, A2, and OR gate Ol are
denoted by 97, “117, “10”, “12”, and “13”, respectively.
Therefore, we can get a CNF file of the system description
SD.cnf shown in Fig. 1.

Similarly, we can give an observation file in CNF. For
instance, suppose that we have the observation on input
and output variables, “17, 27, “3”, “4”, and ‘57, then
the observation on the CNF file includes the following
clauses:

-10

20

-30

40

=50

3.2. Algorithm IsDiag

Given a system to be diagnosed, we suppose that the sys-
tem description SD.cnf and observations OBS.cnf have
been created off-line. Then in this section we will give an
algorithm IsDiag to judge whether a component set is a
diagnosis, by calling SAT solvers as follows:

Function IsDiag(SubCOMP] ))

Input: SubCOMP, a subset of COMPS to be judged
currently

Output: It returns “true” if SubCOMP is a diagnosis,
else it returns “false”.

Step 1: Extract all the related component descriptions in
SD.cnf to the complementary set (COMPS — SubCOMP)
of SubCOMP, and put them in a new CNF file
SD_C_OBS.cnf.

Step 2: Add the OK mode clause of each component in
(COMPS - SubCOMP) to SD_C_OBS.cnf.

Step 3: Add the content of OBS.cnf to SD_C_OBS.cnf.

Step 4: Call a SAT solver with SD_C_OBS.cnf, if it is
satisfiable, return “true” (i.e. SubCOMP is a diagnosis),
else return “false” (i.e. SubCOMP is not a diagnosis).

According to the definition of consistency-based diagno-
sis, in order to determine whether SubCOMP is a diagno-
sis, we need to check whether all the normal behaviors
related to the complementary set (COMPS — SubCOMP)
are consistent with all observations. Therefore, only all
the related normal behavioral descriptions in SD.cnf are
considered (Step 1). In addition, all the OK modes of these
are collected (Step 2). Then, all the obtained observations

are also constrained (Step 3). Afterwards, a new CNF file
related to (COMPS — SubCOMP) is created, being called
by SAT solvers (Step 4).

It should be noted that given the system description
SD.cnf, we can build a map from each component to all
the related clauses off-line. Therefore, from this map, we
can find related clauses to (COMPS — SubCOMP) directly
in Step 1, and the time complexity is linear to the length of
(COMPS — SubCOMP).

3.3. Deriving all MCBDs with SAT solvers

Next, we can derive all MCBDs with the CSSE-tree that
was proposed by us in Ref. [10] or with the inverse CS-tree
with Mark Set in Ref. [11], using the function IsDiag for
checking a diagnosis. The basic idea is to enumerate all
necessary subsets of COMPS according to some order
(such as width-first or depth-first, from shorter subsets to
longer subsets or from longer subsets to shorter subsets),
and check each of them with IsDiag. As some pruning rules
or marking rules are introduced, the efficiency is improved.
More details of the four algorithms can be found in related
papers, omitted here for simplicity.

The complexity of each algorithm mentioned above is
O(2%) in the worst cases, where k is the length of the system
component set COMPS. However, many nodes have been
pruned by pruning rules, and hence the complexity is much
less than O(2%) in general. Especially, when we consider sin-
gle- or double-fault diagnosis, the complexity of CSSE-tree
will be reduced to O(k?) in the worst situation (as the
CSSE-tree is extended by width-first and from shorter sub-
sets to longer subsets, the generated nodes are all the single
components and the combination of all the double compo-
nents, i.e. the maximum number of nodes generated is
C(k, 1)+ C(k,2) = 1/2(k* + k), where function C(-) denotes
the combination), therefore the efficiency is improved
greatly. We will also compare them in detail by the exper-
iments in the following section:

4. Experimental results and analysis

We have implemented the four algorithms and tested a
lot of examples to evaluate their performance. The environ-
ment for implementation and tests was Dell Dimension
C521, MD Athlon(tm) 64 x 2 Dual Core Processor

Fig. 2. Polybox_5 (a) and Polybox_9 (b).



492

3600+, 1.9 GHz, 1022 MB RAM, Windows XP, and
VC++ 6.0. The SAT solver we used in IsDiag is
RSAT—the gold medal SAT solver in SAT07 competition
[12].

We ran all the four algorithms on the circuit cl17 of
ISCAS-85, two full-adders (one-bit fulladder and two-bit
fulladder), and two Polybox circuits [6] (with NAND gates
and NOR gates instead of multipliers and adders, respec-
tively). Two Polybox circuits are Polybox_5 (three NAND
gates and two NOR gates) and Polybox 9 (six NAND
gates and three NOR gates), shown in Fig. 2, where NAi
(1 <i<6) denotes a NAND gate and NO;j (1 <;j<3)
denotes a NOR gate. For each circuit, firstly we give the
system description SD.cnf. Then all possible observations
can be produced by combining all various values of all
input and output variables, and every OBS.cnf is tested
using the four algorithms. At the same time, we record
the time cost and nodes generated in all for processing each
OBS.cnf. Finally, the average time and nodes are totaled in
Table 1. (Note in this table, A, B, C and D denote the
CSSE-tree, inverse CS-tree, CS-tree with Mark Set, and
CSISE-tree, respectively.)

From Table 1, we can see clearly that the CSSE-tree pro-
posed by us generates the fewest nodes and has the best effi-
ciency in general (only for Fulladder_2, more or less the
same as the CS-tree with Mark Set). The other three meth-
ods sorted by the number of nodes generated are the
inverse CS-tree, CS-tree with Mark Set, and CSISE-tree.

Table 1
Average time cost and nodes generated.
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This is because the shorter component sets can be checked
first in the CSSE-tree (width-first search) and inverse CS-
tree (depth-first search), and single or double faults are
more popular in average. Additionally, some pruning rules
have been introduced by the CSSE-tree. In contrast, the
longer component sets are first checked by the CS-tree with
Mark Set, and CSISE-tree.

However, we can also see from Table 1 that though
more nodes have been generated by the CS-tree with Mark
Set than the inverse CS-tree, the corresponding efficiency of
the former is better than that of the latter in some exam-
ples, such as Polybox 9 and Fulladder_2. That is mainly
because the Mark Set is introduced in the former, which
can be seen as a heuristic strategy.

Generally, for each algorithm, the time cost is increasing
with the increment of generated nodes in total. Here, a
Polybox_9 example is depicted in Fig. 3.

Next, let us have a look at the relationship between the
efficiency and the number of faults. Two better algorithms,
CSSE-tree and CS-tree with Mark Set, are depicted in
Table 2 and Table 3, where average time costs (seconds)
are listed.

We can further see clearly that the CSSE-tree is gener-
ally better than the CS-tree with Mark Set when the max-
imum number of fault components is smaller; especially
when the number is 1 or 2, i.e. in single- or double-fault
cases. This also mainly results from the different orders
of extension of the corresponding trees.

ISCAS-85 cl17 Polybox_5 Polybox_9 Fulladder 1 Fulladder 2
Average time Average Average time Average Average time Average Average time Average Average time Average
(s) nodes (s) nodes (s) nodes (s) nodes (s) nodes
A 1.8870 9.6797 1.6194 7.9297 17.1777 70.9902 1.2890 6.6563 29.3283 112.4883
B 3.0988 21.7031 2.3188 16.6094 29.6580 207.9443 1.7228 12.1250 46.1013 323.7031
C 3.6797 41.4766 2.5005 24.1602 27.3227 273.9072 2.0249 22.1563 29.2773 379.1992
D 7.9090 55.5781 3.3839 24.4844 57.9165 399.3506 3.7394 26.9063 119.9656 826.6953
40 Time: nodes (CSSE-tree) Tiem: nodes (CS-tree with NS)
— T 500
230 2 el
b7 _,.fl 2 40
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Fig. 3. Time (s): nodes in Polybox_9.
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Time (s): maximum number of fault components in c17, Polybox_5, Fulladder 1.
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Total faults ISCAS-85 cl17 Polybox_5 Fulladder_1
CSSE-tree CS-tree with MS CSSE-tree CS-tree with MS CSSE-tree CS-tree with MS
0 0.146392 1.010266 0.143459 0.824069 0.151481 0.863559
<1 0.821498 2.050138 0.660813 1.524773 0.784292 1.576730
1 1.760776 3.496916 1.350618 2.459045 1.290540 2.147267
<2 1.763235 3.485248 1.358411 2.280260 1.244020 1.988916
2 2.572540 4.718546 2.147613 3.134951 1.880567 2.559634
<3 1.886956 3.679675 1.619399 2.500500 1.289037 2.024858
3 3.522822 6.250428 2.843141 3.533181 2.684551 3.139069
Table 3
Time (s): maximum number of fault components in Polybox_ 9, Fulladder_ 2.
Total faults Polybox_9 Fulladder_2
CSSE-tree CS-tree with MS CSSE-tree CS-tree with MS
<l 1.453956 3.846129 15.748950 12.359005
1 8.521352 16.941680 29.620212 21.944777
<2 8.299941 15.081002 19.022576 22.309946
2 17.674624 30.465692 22.292435 30.781896
<3 13.662437 23.199518 27.624513 27.797646
3 23.355471 37.874223 40.605235 36.032242
<4 17.177651 27.322747 29.328317 29.277322
4 31.051707 43.596556 54.875494 51.354207

5. Discussion

As we know, in traditional methods for model-based
diagnosis, conflict recognition and candidate generation
are the two important steps. There are many algorithms
to solve the two problems, such as ATMS [13], DART
[14], the approach with structural information [15], and
variant CS-trees [10,11] for deriving all minimal conflict
sets; and HS-tree [6], HST-tree [16], BHS-tree [17], the
approach based on Boolean algebra [17], the approach with
genetic algorithm [18], and our HSSE-tree [19], etc. for
deriving all minimal hitting sets. However, both of the
two steps are NP-complete problems. Therefore, the effi-
ciency of the final diagnosis is heavily affected by that of
the two steps.

Instead, in this paper, we can directly compute all min-
imal consistency-based diagnosis sets without needing the
two steps additionally. And the efficiency is very high in
general. Especially our CSSE-tree is better than other algo-
rithms for single- or double-diagnosis in general.

6. Conclusion and future work

In this paper, a universal algorithm of checking whether
a component set is a diagnosis is proposed using SAT solv-
ers. Then all minimal diagnoses can be derived by the
CSSE-tree or by the other three similar algorithms. Exper-
imental results show that our CSSE-tree generates fewest
nodes, and has the best efficiency in general.

The hierarchical way has been applied in the MBD field,
such as [20,21] and our hierarchical approach to model-
based diagnosis of discrete-event systems [22]. Every inde-

pendent part of the system can be solved in parallel, thus
the efficiency will be improved, and then all the indepen-
dent solutions are merged to obtain the final results. This
can also be a new research direction to derive all minimal
diagnoses.
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